
(GAD170 - 24T1) - Pseudo Code - Project 2

Gamemode Manager Script -

Variables:
// boolean for letting the game know when the game is over
Declare isGameOver bool = false

// references to the other 2 classes needed this class is the only class with references to
the other classes in order for all classes to funnel properly to the main class which is the
gamemode manager
Declare npcManagerRef NPCManager class
Declare uiManagerRef UIManager class

// crew member list which holds the information of each crew member recruited by the
player
Declare activeCrewMembers List string firstName, string lastName, string hobby

Functions:

// gets all references needed for the class to work properly
GetAllReferences()
npcManagerRef = GetComponent of type NPCManager class
uiManagerRef = GetComponent of type UIManager class

// adds a new human member to the list by inputting the first name, last name & hobby of
the recruited members portfolio when the player recruits the member
AddNewCrewMemberToList(string firstName, string lastName, string hobby)
Get firstName, lastName, hobby parameter values & add to activeCrewMembers list

// code executed when the player clicks the recruit button on a crew member portfolio
RecruitCrewMember()
If npcManagerRef of type chosenHobby = any 4 alien hobbies of alienHobbies list

Local string choseHobbyToAttack = random human hobby from npcManagerRef of type
humanHobbies

Call RemoveInfoFromCrewBoard with input parameters (choseHobbyToAttack local var)
from uiManager class

// local list similar to the active crew members list but is used to collect all the
crew members to remove for later, this will add the members to be removed to a
local list & in another for each loop will remove the active crew members based on
the local list



Local membersToRemove list of type tuple string firstName, string lastName, string
hobby

// uses a for each loop & adds the crew member which has the hobby targeted by
the alien to the members to remove list
For each loop which loops through each member in activeCrewMembers list

if member of type hobby = chosenHobbyToAttack
Add current member to membersToRemove list

// for each loop is used to remove the members from the active crew members list
using the members to remove list as the collection
For each loop which loops through each member in membersToRemove list

Remove current member from memberactiveCrewMembers list

Call ChooseNewCrewMember() from npcManager class
Call SetCrewPortfolio with input parameters (npcManagerRef of type
generatedFirstName, npcManagerRef of type generatedLastName, npcManagerRef of
type chosenHobby) from uiManager class

Else

Local string firstName = npcManagerRef of type generatedFirstName
Local string lastName = npcManagerRef of type generatedLastName
Local string hobby = npcManagerRef of type chosenHobby

Call AddNewCrewMemberToList with input parameters (firstName, lastName, hobby)
Call AddInfoToCrewBoard with input parameters (firstName, lastName, hobby) from
uiManager class
Call ChooseNewCrewMember() from npcManager class
Call SetCrewPortfolio with input parameters (npcManagerRef of type
generatedFirstName, npcManagerRef of type generatedLastName, npcManagerRef of
type chosenHobby) from uiManager class

// code executed when the player clicks the reject button on a crew member portfolio
RejectCrewMember()
Call ChooseNewCrewMember() from npcManager class
Call SetCrewPortfolio() with input parameters (npcManagerRef of type generatedFirstName,
npcManagerRef of type generatedLastName, npcManagerRef of type chosenHobby) from
uiManager class



Start()
// gets all references at the start of the game
Call GetAllReferences()

// execute markov chain name generator
Call MarkovFirstNameGenerator() from npcManager class
Call MarkovLastNameGenerator() from npcManager class
Call ChooseHobby() from npcManager class
Call SetCrewPortfolio with input parameters (npcManagerRef of type generatedFirstName,
npcManagerRef of type generatedLastName, npcManagerRef of type chosenHobby) from
uiManager class

Update()
// if the player collects a total of 10 crew mates & the game is not over than the portfolio
widget & crew member board widget will vanish & a "You Win" text will show up
// the isGameOver bool will be set to true to this code will only be executed once
if activeCrewMembers list count = 10 & isGameOver = false)

Print "You Win" to the log
Set isGameOver to true

// sets portfolio widget to inactive
uiManagerRef of type portfolioRef sets SetActive to false

// for each crew member widget the loop will set each member widget to inactive
For each loop which loops through each member in crewMembers list from uiManager
class)

Member set SetActive to false

// sets the win text to active
uiManagerRef of type winObject set SetActive to true

UI Manager Script -

Variables:
// references to all the UI game objects
Declare portfolioRef GameObject variable
Declare profilePicRef GameObject variable
Declare firstNameTxtResultRef GameObject variable
Declare lastNameTxtResultRef GameObject variable
Declare hobbyTxtResultRef GameObject variable

// references to the list of crew member game objects text information



Declare firstNameTextMeshProUGUI variable
Declare lastNameTextMeshProUGUI variable
Declare hobbyTextMeshProUGUI variable

// references to the list crew member game objects image information
Declare profileImage Image variable
Declare full_Image Image variable

// reference to the win text game object
Declare winObject GameObject variable

// lists for the sprite character images, however there is only one item in each list so it is
only here if I decided to use more than one sprite character
Declare profileCharacterImage List Sprite
Declare crewCharacterImage List Sprite

// reference to active crew member list information
Declare crewMembers List GameObject

// dictionary which assigns the full length sprite image (active crew member on team) to
the half image (portfolio image)
Declare crewImages Sprite, Sprite dictionary

Functions:

// adds all the references to the image & text components
AddReferences()

// references to portfolio information
profileImage = profilePicRef.GetComponent of type Image
firstName = firstNameTxtResultRef.GetComponent of type TextMeshProUGUI
lastName = lastNameTxtResultRef.GetComponent of type TextMeshProUGUI
hobby = hobbyTxtResultRef.GetComponent of type TextMeshProUGUI
winObject = transform.Find name of object (WinTxt) of type gameObject

// adds the images in the lists to the dictionary, this is done by assigning a full length
version of an image to the portfolio key image
AddToCrewImageDictionary()
For loop which loops through as many times as crewCharacterImage length value

profileCharacterImage[at index], crewCharacterImage[at index] added to crewImages
dictionary

// set crew member portfolio information
SetCrewPortfolioImage()



profileImage of type sprite = profileCharacterImage at first index

// sets the crew portfolio to either be accepted or rejected
SetCrewPortfolio(string firstNameInput, string lastNameInput, string hobbyInput)
Call SetCrewPortfolioImage()
firstName of type text = firstNameInput parameter value
lastName of type text = lastNameInput parameter value
Hobby of type text = hobbyInput parameter value

// adds the information from the recruited members portfolio into the crew team board,
this adds a crew member to the players team
AddInfoToCrewBoard(int crewID, string firstName, string lastName, string hobby)
For each loop which loops through every member in crewMembers tuple list

// gets a local variable reference to the prefab crew members first name (game
object), last name (game object) & hobby (game object) based on the last crew
member in the list
Local Image profilePic = member.GetComponent of type Image
Local GameObject firstNameRef = member.transform.Find object called FirstName
Local GameObject lastNameRef = member.transform.Find object called LastName
Local GameObject hobbyRef = member.transform.Find object called Hobby

// gets a local variable reference to the chosen crew members first name (text
mesh), last name (text mesh) & hobby (text mesh)
Local TextMeshProUGUI firstNameTxt = firstNameRef.GetComponent of type
TextMeshProUGUI
Local TextMeshProUGUI lastNameTxt = lastNameRef.GetComponent of type
TextMeshProUGUI
Local TextMeshProUGUI hobbyTxt = hobbyRef.GetComponent of type
TextMeshProUGUI

// if the crew member slot has there first name set to first name & not an actual
name this means that the crew member slot is empty
if firstNameTxt of type text = First Name

// sets all the information for the recruited crew member
profilePic of type sprite = crewCharacterImage at first index
firstNameTxt of type text = firstName
lastNameTxt of type text = lastName
hobbyTxt of type text = hobby
Break from for each loop

// removes members from the players team if an alien is recruited, the members removed
will be based there hobby & which hobby is chosen by the alien to attack



RemoveInfoFromCrewBoard(string hobby)
For each loop which loops through every member in crewMembers tuple list

Local Image profilePic = member.GetComponent of type Image
Local GameObject firstNameRef = member.transform.Find object called FirstName
Local GameObject lastNameRef = member.transform.Find object called LastName
Local GameObject hobbyRef = member.transform.Find object called Hobby

Local TextMeshProUGUI firstNameTxt = firstNameRef.GetComponent of type
TextMeshProUGUI
Local TextMeshProUGUI lastNameTxt = lastNameRef.GetComponent of type
TextMeshProUGUI
Local TextMeshProUGUI hobbyTxt = hobbyRef.GetComponent of type
TextMeshProUGUI

if hobbyTxt of type text = hobby parameter value

profilePic of type sprite = null
firstNameTxt of type text = "First Name" string
astNameTxt of type text = "Last Name" string
hobbyTxt of type text = "Hobby" string

Start()
// calls the add functions for dictionaries & references
Call AddToCrewImageDictionary()
Call AddReferences()

// debugs the win text objects name for debugging purposes only in order to make sure I
had the correct reference
Print winObject of type name to log

// sets the win text object to inactive at the start of the game
Set winObject active to false
NPC Manager Script-

Variables:
// declare current letter variable used for name generation
Declare currentLetter char variable

// declare first name variables
Declare generatedFirstName string variable
Declare firstNameLength int variable
Declare firstNameMinLength int variable
Declare firstNameMaxLength int variable



// declare last name variables
Declare generatedLastName string variable
Declare lastNameLength int variable
Declare lastNameMinLength int variable
Declare lastNameMaxLength int variable

// declare chosen random hobby variable
Declare chosenHobby string variable

// declare dictionaries for markov first name & last name generator
Declare firstNameDictionary char, list char, float dictionary
Declare lastNameDictionary char, list char, float dictionary

// declare starting letter for first name & last name
Declare firstNameStartLetterList char list
Declare lastNameStartLetterList char list

// list of hobbies to choose from for the human & alien members
Declare humanHobbies string list
Declare alienHobbies string list

Functions:

// add chars to first letter of name list
AddCharToFirstNameList function()
Clear the firstNameStartLetterList
Create new firstNameStartLetterList with chars used for start of a name

// add chars to first letter of name list
AddCharToLastNameList function()
Clear the lastNameStartLetterList
Create new lastNameStartLetterList with chars used for start of a name

// add to hobby list
AddToHumanHobby()
Add range of human hobbies as string to human hobbies list

// add to hobby list
AddToAlienHobby()
Add range of human hobbies as string to alien hobbies list

// add letter values with probability values assigned to each letter in the list
// highest probability char value in list is first in the list for organization



AddToFirstNameDictionary()
Add char (key) & list of chars (letter), floats (probability) to firstNameDictionary dictionary

// add letter values with probability values assigned to each letter in the list
// highest probability char value in list is first in the list for organization
AddToLastNameDictionary()
Add char (key) & list of chars (letter), floats (probability) to lastNameDictionary dictionary

MarkovFirstNameGenerator()
// sets the generated first name & current letter to empty
generatedFirstName = empty
currentLetter = empty

// sets current char to a char from first name letter list, then adds it to the first index of
the generated name
currentLetter = random char chosen from the firstNameStartLetterList list
currentLetter is added to generatedFirstName string

// sets the min - max first name length range
firstNameMinLength = 4
firstNameMaxLength = 7

// sets the length of the name with true max name length
firstNameLength = a random int between firstNameMinLength & firstNameMaxLength

// loop dictionary to create name based on name length
For loop which loops through as many times as the firstNameLength value

LoopFirstNameDictionary

// makes the first letter of the fully generated first name a capital letter
generatedFirstName = (cast as char) generatedFirstName[0] - 32) +
generatedFirstName.Substring(1)

MarkovLastNameGenerator()
// sets the generated last name & current letter to empty
generatedLastName = empty
currentLetter = empty

// sets current char to a char from last name letter list, then adds it to the first index of the
generated name
currentLetter = random char chosen from the lastNameStartLetterList list



currentLetter is added to generatedLastName string

// sets the min - max last name length range
lastNameMinLength = 4
lastNameMaxLength = 8

// sets the length of the name with true max name length
lastNameLength = a random int between lastNameMinLength & lastNameMaxLength

// loop dictionary to create name based on name length
For loop which loops through as many times as the lastNameLength value

LoopLastNameDictionary

// makes the first letter of the fully generated last name a capital letter
generatedLastName = (cast as char) generatedLastName[0] - 32) +
generatedLastName.Substring(1)

LoopFirstNameDictionary()
// checks if the current letter has a spot in the dictionary, if not then the loop is done
if firstNameDictionary contains the currentLetter char value

// sets the local "value" to the tuple list of the current letter
List char (letter), float (probability) value = firstNameDictionary [currentLetter]

// local “randomValue” gets a random float between 0.0 & 1.0
float randomValue = random float between 0.0, 1.0

// null check for error prevention
if value doesn’t = null

if value probability float at index 0 = 1.0
Value.letter at [0] is added to generatedFirstName

Else if value probability float at index 0 = 0.5

// the local "decider" var will get a random value of 0 - 1 which will
equally decide randomly which tuple will be chosen
int decider = random int between 0 or 1

// if the local "decider" var is equal to 0 choose tuple 1
If decider = 0

Value.letter at [0] is added to generatedFirstName string

// if the local "decider" var is equal to 1 choose tuple 2



Else
Value.letter at [1] is added to generatedFirstName string

Else if value.probability at [0] is greater than local randomValue variable
Value.letter at [0] is added to generatedFirstName string

Else
Value.letter at [1] is added to generatedFirstName string

// gets the last letter of the name & sets it to the current letter
currentLetter = generatedFirstName [last index]

LoopLastNameDictionary()
// checks if the current letter has a spot in the dictionary, if not then the loop is done
if lastNameDictionary contains the currentLetter char value

// sets the local "value" to the tuple list of the current letter
List char (letter), float (probability) value = lastNameDictionary [currentLetter]

// local “randomValue” gets a random float between 0.0 & 1.0
float randomValue = random float between 0.0, 1.0

// null check for error prevention
if value doesn’t = null

if value probability float at index 0 = 1.0
Value.letter at [0] is added to generatedLastName

Else if value probability float at index 0 = 0.5 then true branch is executed
// the local "decider" var will get a random value of 0 - 1 which will
equally decide randomly which tuple will be chosen
int decider = random int between 0 or 1

// if the local "decider" var is equal to 0 choose tuple 1
If decider = 0

Value.letter at [0] is added to generatedLastName string

// if the local "decider" var is equal to 1 choose tuple 2
Else

Value.letter at [1] is added to generatedLastName string

Else if value.probability at [0] is greater than the local randomValue variable
Value.letter at [0] is added to generatedLastName string



Else
Value.letter at [1] is added to generatedLastName string

// gets the last letter of the name & sets it to the current letter
currentLetter = generatedLastName [last index]

SetupCrewMember()
// setup char list & dictionary for first name
Call AddCharToFirstNameList()
Call AddToFirstNameDictionary()

// setup char list & dictionary for last name
Call AddCharToLastNameList()
Call AddToLastNameDictionary()

// setup list of hobbies for humans & aliens
Call AddToHumanHobby()
Call AddToAlienHobby()

// chooses a random hobby for the crew members portfolio
ChooseHobby()
chosenHobby = empty

// setup chosen crew member hobby
Int isAlien = random int between 0 or 1

// if crew member is alien than the if branch will be chosen, if not than the else statement
will be chosen
If isAlien = 0

chosenHobby = random hobby from alienHobbies list

Else
chosenHobby = random hobby from humanHobbies list

ChooseNewCrewMember()
// calls name generator & hobby functions
Call MarkovFirstNameGenerator()
Call MarkovLastNameGenerator()
Call ChooseHobby()

Start()
// generates the crew members first name & last name
SetupCrewMember()


