
Project 1: Pseudocode
Player Movement:
Start:
 Initialise variables

Update:
 If player is not alive, exit
 Call Run()
 Call FlipSprite()
 Call Die()

OnMove:
 If the player is not alive, exit
 Get the input from the player (joystick/keys) and update moveInput

OnFire:
 If player is not alive, exit
 Instantiate the weapon prefab at the firePoint

OnJump:
 If player is not alive, exit
 If player is not touching the platform, exit
 If the jump button /key is pressed:
 Apply jump speed to the player's Rigidbody

Run:
 Calculate the player velocity
 Set player's Rigidbody velocity to playerVelocity
 Update the Animator's ‘isRunning’ parameter

FlipSprite:
 Check if the player is moving
 If yes, access the local scale and flip the player's sprite direction

Die:
 If player touches enemy or hazard:
 Set isAlive bool to false
 Trigger dying animation
 Apply deathKick to player's Rigidbody
 Disable the player controls
 Call ProcessPlayerDeath() from GameSession

 Student No. 1023257Kathy Stephens

mailto:1023257@student.sae.edu.au

ProcessPlayerDeath:
 If playerLives > 1:
 TakeLife()
 Else:
 ResetGameSession()

TakeLife:
 Decrease playerLives by 1
 Reload current scene
 Update UI with remaining lives

ResetGameSession:
 Load the first scene
 Destroy GameSession object

Enemy Movement:
Start:
 Initialise variables
 Set initial velocity

Update:
 Set velocity to move the enemy
 Call FlipEnemyFacing

OnTriggerExit2D:
 Change the movement direction of the enemy
 Call FlipEnemyFacing method

FlipEnemyFacing:
 Flip enemy's sprite direction

Die:
 Trigger death animation
 Start DestroyAfterAnimation coroutine

DestroyAfterAnimation:
 Wait for 0.1 seconds
 Destroy the enemy object

 Student No. 1023257Kathy Stephens

mailto:1023257@student.sae.edu.au

Enemy Wave Spawner
Start:
 Start the SpawnWaves coroutine

SpawnWaves:
 While true:
 Wait for a set time before spawning the next wave
 Call SpawnWave

SpawnWave:
 For each enemy to be spawned:
 Choose a random spawn point
 Instantiate the enemyPrefab at the spawn point

StopSpawning:
 Stop all spawning coroutines

Weapon
Start:
 Initialise variables
 Calculate the xSpeed (speed the weapon’s ammo fires horizontally)

Update:
 Set weapon's Rigidbody velocity in x-direction

OnTriggerEnter2D:
 If the weapon collides with an enemy:
 Add points for weapon damage to the score
 Call Die() of the enemy
 Destroy enemy after 1 second

OnCollisionEnter2D(Collision2D other):
 Destroy weapon object

 Student No. 1023257Kathy Stephens

mailto:1023257@student.sae.edu.au

Finish Line
Start:
 Check if enemyWaveSpawner is assigned
 Check if audioSource is assigned

OnTriggerEnter2D:
 If the player collides with the finish line
 Play the finish visual effect (VFX)
 Stop enemy spawning from the enemyWaveSpawner
 Destroy all enemies with DestroyAllEnemies()

DestroyAllEnemies:
 Find all enemies
 For each enemy:
 Instantiate the VFX - enemy explosion effect at the enemy's position
 Play the sound effect (SFX) explosionSound
 Destroy the enemy object

Game Session
Awake:
 Implement a singleton pattern to ensure there is only one GameSession object

Start:
 Update UI with initial lives and score

ProcessPlayerDeath:
 If player has more than 1 life:
 TakeLife()
 Else:
 ResetGameSession()

AddToScore:
 Add points to the score
 Update UI with the new score

TakeLife:
 Decrease playerLives by 1
 Reload current scene
 Update UI with remaining lives

ResetGameSession:

 Student No. 1023257Kathy Stephens

mailto:1023257@student.sae.edu.au

 Load the first scene
 Destroy GameSession object

 Student No. 1023257Kathy Stephens

mailto:1023257@student.sae.edu.au

